Bayesian long-run prediction in time series models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Time Series Modelling and Prediction with Long-Range Dependence

We present a class of models for trend plus stationary component time series, in which the spectral densities of stationary components are represented via non-parametric smoothness priors combined with long-range dependence components. We discuss model tting and computational issues underlying Bayesian inference under such models, and provide illustration in studies of a climatological time ser...

متن کامل

Time Series Prediction with Variational Bayesian Nonlinear State-Space Models

In this paper the variational Bayesian method for learning nonlinear state-space models introduced by Valpola and Karhunen in 2002 is applied to prediction in the ESTSP’07 time series prediction competition data set. The data set is pre-processed by approximately removing the periodic component of the data and the nonlinear state-space model is only learned on the residuals. The model uses mult...

متن کامل

A Bayesian Multiple Models Combination Method for Time Series Prediction

In this paper we present the Bayesian Combined Predictor (BCP), a probabilistically motivated predictor for time series prediction. BCP utilizes local predictors of several types (e.g. linear predictors, artificial neural network predictors, polynomial predictors etc.) and produces a final prediction which is a weighted combination of the local predictions; the weights can be interpreted as Bay...

متن کامل

Long-Term Prediction of Time Series Using State-Space Models

State-space models offer a powerful modelling tool for time series prediction. However, as most algorithms are not optimized for longterm prediction, it may be hard to achieve good prediction results. In this paper, we investigate Gaussian linear regression filters for parameter estimation in state-space models and we propose new long-term prediction strategies. Experiments using the EM-algorit...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 1995

ISSN: 0304-4076

DOI: 10.1016/0304-4076(94)01662-j